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Abstract—This paper presents an efficient approach to the
modeling and classification of vehicles using the magnetic signa-
ture of the vehicle. A database was created using the magnetic
signature collected over a wide range of vehicles(cars). A sensor
dependent approach called as Magnetic Field Angle Model is
proposed for modeling the obtained magnetic signature. Based
on the data model, we present a novel method to extract the
feature vector from the magnetic signature. In the classification
of vehicles, a linear support vector machine configuration is
used to classify the vehicles based on the obtained feature
vectors.

Keywords-Wireless Sensor Networks, Magnetometers, AMR
Sensors, Vehicle Detection, Data Modeling, Support Vector Ma-
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I. INTRODUCTION

The data collected by urban planning and development
bodies [1] reveal that a great deal of resources are wasted
because of the road traffic congestion. The number of man
hours wasted due to traffic delay and the amount of pollution
are significantly huge. Therefore, there is a great demand for
intelligent traffic systems which are capable of monitoring
traffic to reduce delay and to smoothen the flow of vehi-
cles. An important parameter of current traffic management
systems is the task of vehicle detection and classification.
Distinction between different classes of vehicles provides
useful information about traffic statistics.
Current technologies that are used in the study of traf-

fic statistics include Intrusive technologies such as Induc-
tive loop, Pneumatic tube, Piezoelectric, Weight-In-Motion
and Non-Intrusive technologies such as Microwave Radar,
Infrared based systems, Video-Image processing, Passive
acoustic system. Among all the technologies Induction loop
and Video-Image are most widely used but they have a lot
of disadvantages. The Induction loop sensor is big in size
which makes it difficulty in maintenance and the Video-
Image based sensors are costly with big influence of external
light conditions. For maximizing the benefits from all these
technologies, there must be a large scale deployment of these
sensors on all major freeways and local streets.
Wireless Sensor Networks have a high level of flexibility

in their deployment configuration. Since the sensor nodes
can be placed virtually anywhere on the road as long as

they are within communication range, customized configu-
rations can be adopted for different applications and envi-
ronments. This unique characteristic is a big advantage over
all other surveillance technologies. These passive sensors
are mounted on low power consuming wireless transceivers
called motes, capable of communicating with each other and
a base station. The sensors are also capable of sensing the
magnetic field. Therefore, the field induced due to a large
permeable object, like a vehicle, can be sensed. Different ve-
hicles have different metallic components and configuration,
which cause different perturbation curves in the presence
of a homogeneous magnetic field. This allows us to extract
unique characteristics from the recorded magnetic signature.
By feeding these attributes to a Support Vector Machine
(SVM) [2], the vehicle class [3] can be determined. This
can be used as an information for design of automatic toll
collection system, prediction of highway capacity, giving
signal priority in traffic control system and pavement life
estimation in pavement design.
Notation: Bold lower-case alphabets and alphabets with an

arrow on top of them represent vectors. Alphabets mentioned
in parentheses as a super-script represent the axis direction
and are always lower-case letters. Alphabets mentioned as
a sub-script represent time-stamp and are always lower-
case letters. All upper-case alphabets mentioned represent
constants.
In Section II, we present a sensor dependent model for

modeling the magnetic signature. Based on this model, we
propose an algorithm to extract the feature vector in Section
III. The obtained feature vector is given to a linear SVM and
the performance of the existing and proposed algorithms are
studied in Section IV . Conclusions can be found in Section
V.

II. DATA MODELING

A. Data Collection

The magnetometer senses the magnetic signature of a ve-
hicle whenever the flux lines associated with it is perturbed
by a vehicle in its vicinity. HMC1502[4] is a dual-axis
anisotropic magnetoresistance (AMR)[5] magnetometer. It is
mounted on a TelosB[6] mote and together they constitute
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the magnetometer setup. The orientation of the magnetome-
ter is such that it records the Y and Z-axis components of
the magnetic field.
Extensive data was collected over a wide range of vehi-

cles. Table I lists out all the cars covered during the data
collection and are grouped based on the length of the car. A
total of 234 magnetic field readings in Y and Z-axis direction
each, were captured. In later sections we will be using
Table I to study the performance of the SVM classifier by
varying the number of datasets used in training and testing
the classifier.

Table I: Vehicle Magnetic Signature Database[7] grouped based on the
length of the car

Car-type Type 1 Type 2 Type 3 Type 4

Car Len. (3.0-3.5) (3.5-4.0) (4.0-4.5) (>4.5)
(in meters)
Type of 1800(8) 11Corsa(2) 3Accent(1) 6Civic(1)
∗Car(n), 1Alto(2) 3i20(1) 2Cielo(1) 8Corolla(1)
where n 2Matiz(3) 5Figo(2) 6City(4) 3Elentra(2)
represents 3Santro(5) 3GetZ(2) 12Vento(1) 8Innova(2)
number of 1Omni(6) 3i10(4) 1SX4(2) 7Linea(1)
datasets 9Spark(1) 4Indica(6) 3Verna(1) 3Sonata(1)

4Nano(2) 7Palio(1) 1Esteem(2) 10Octiva(1)
1WagonR(4) 1Swift(2) 4Indigo(2) 10Laura(1)

Cars = 42 1Estillo(3) 1Zen(2) 1Dzire(1)
Sets = 89 9Beat(2) 3Ritz(1) 4Sumo(1)

13Reva(1) 5Fiesta(1)
6Petra(1)
14Logan(1)

Number of 87 67 53 27Datasets
∗ Indicates the Car Manufacturer
1 - Maruti Suzuki; 2 - Daewoo; 3 - Hyundai; 4 - Tata Motors; 5 - Ford; 6

- Honda; 7 - Fiat; 8 - Toyota; 9 - Chevrolet; 10 - Skoda; 11 - Opel; 12 -
Volkswagon; 13 - Mahindra; 14 - Renault.

B. Proposed Sensor Dependent Model: Magnetic Field An-
gle Model (MFMA)

We propose a new model for modeling the magnetic sig-
nature of a vehicle. Depending on the metallic configuration
and composition of a vehicle, different magnetic signatures
are induced by different vehicles. An AMR Wheatstone
bridge magnetometer is the most commonly used device in
a wireless sensor node to detect the induced magnetic field.
The four AMR elements are oriented in a diamond shape
and the ends of the bridge are connected to a differential Op-
Amp of a fixed voltage gain. The bridge becomes unbalanced
in the presence of a ferrous material in the magnetic field.
HMC1052 has two Wheatstone bridge setups in orthogonal
directions and can be used to measure the component of the
magnetic field along two orthogonal directions.
Let K be the material constant dependent on R0 and

ΔR0 (Resistances of the AMR Element), G be the voltage
gain of the differential Op-Amp to which the ends of the
Wheatstone bridge are connected, Vs be the supply voltage
and α be the angle between the internal magnetization vector
and the direction of current called as rotation angle. Then,

VBD which is the amplified output of the Wheatstone bridge
as seen by the differential Op-Amp is as follows:

VBD = G

(
K

1 +K

)
(sin 2α)Vs. (1)

=⇒ α =
1

2
sin−1

(
VBD

Vs

(
1 +

1

K

)
1

G

)
(2)

Refer Appendix A for the derivation of equation (1). From
equation (2), we can say α ∈

[
−π
4 , +π

4

]
. Now consider

a vehicle moving on a straight road with constant velocity
as shown in Fig. 1, with the HMC1502 sensor placed at
the origin. As the vehicle approaches the sensor, the flux
lines bend away from the sensor towards the vehicle due
to the presence of metallic composition in the chassis of
the vehicle. In other words, the number of flux lines passing
through the surface of the permalloy of the HMC1502 sensor
decreases. A change in the number of magnetic flux lines is
equivalent to change in the induced magnetic field. This in-
turn changes the angle between the internal magnetization
vector and the direction of current of the anisotropic mange-
toresistances, which makes the bridge unbalanced. The same
theory holds true when the vehicle leaves the sensor. But,
when the metallic content of the vehicle is aligned with the
sensor, more and more flux lines pass through the surface
of permalloy. As the number of flux lines increases, the
induced magnetic field also increases. As a result, the angle
between the internal magnetization vector and direction of
current changes and the bridge becomes unbalanced. In this
way the induced magnetic field is captured using an AMR
Wheatstone bridge in a particular direction.

Figure 1: The AMR sensor is placed at the origin. Different magnetic
signatures are induced by different vehicles.

Let g be a non-linear function with input αk, where
αk is the angle between the internal magnetization vector
and direction of current at kTs time-instant. Let yk be the
measured output and ηk be the measurement noise at kTs

time-instant. In the signal processing framework, the sensor
model can be defined as follows.

yk = g(αk) + ηk

= G

(
K

K + 1

)
sin(2αk)Vs + ηk (3)

In order to reduce sensor model error and the complexity of
computing α at every time-instant, we assume α is constant
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over a segment of length L. Let α(j) represents the rotation
angle value in the jth segment. With this assumption, we
estimate the segmented α values based on Least Squares
(LS) cost function.

α̂(j) = argmin
α(j)

L∑
i=1

∣∣y(j−1)L+i − g(α(j))
∣∣2 , (4)

subject to |α(j)| ≤
π

4
,where j ∈ {1, · · · , �N/L�}

The performance of the least squares cost function for
different values of L is studied in the next section.

III. FEATURE EXTRACTION

Vehicle Classification is the process of assigning each ve-
hicle into a pre-defined vehicle class based on some features
extracted from its magnetic signature. The feature vector is
obtained by processing the obtained magnetic signature. We
shall briefly discuss about the existing algorithms first and
then, we propose an algorithm to obtain feature vector from
the magnetic signature of a vehicle based on the MFAM
studied in the previous section.

A. Average-Bar Transform[8]

Here the vehicle magnetic signature vector of length N ,
is divided into S sub-vectors. The mean value of each sub-
vector is calculated and the obtained values for S sub-vector
is the feature vector. The value of S is fixed for all classes
of vehicles. The Z-axis measurements of the magnetometer
are primarily used for feature extraction because of their
localized character (perturbations in the magnetic field in
presence of a vehicle are significant in Z-axis direction).

B. Hill-Pattern Transform[8]

This method transforms the signal into a sequence of
{+1,−1} and without losing much information. This ex-
tracts the pattern of “peaks” and “valleys” (local maxima
and minima) of the input signal. The sequence of {+1,−1}
is used as a feature vector. In this case also the Z-axis
measurements of the magnetometer are primarily used for
feature extraction.

C. Magnetic Dipole Model[9]

In this method, a vehicle is modeled as an array of mag-
netic dipoles. The strength of the magnetic dipole and the
separation between the magnetic dipoles varies for different
vehicles.

D. Proposed Algorithm - Segmented Magnetic Field Angle
Algorithm (SMFA Algorithm)

In this algorithm, we use the MFMA data model ex-
plained in section II-B to estimate the parameter α̂ =
[α(1), . . . , α(j)]T , j ∈ {1, . . . , �N/L�} using the least
squares cost function in equation (4), where α is the angle
the magnetization vector makes with the current vector
direction on the surface of the permalloy and L is the

length of the segment. From the estimated α̂, we obtain
αmax and αmin which are the maximum and minimum
value of α̂ respectively, since the metallic composition and
configuration of a vehicle is dependent on αmax and αmin.
The higher the ferrous content in the vehicle, the larger the
absolute values of αmax and αmin. Also, we obtain Q which
is the number of non-zero bins of the histogram plot of α̂,
for a fixed bin-size W . The value Q is a good parameter
which relates to the spread of the signal.
The induced magnetic field curve varies smoothly since

the velocity of the vehicle is constant and is continuous.
Considering these two observations, we compute the α̂ for
different segment lengths L. The value of αmin and αmax

remains same for a fixed segment length L in spite of
changing bin-size W of the histogram as seen in Table II.
Also as L increases, the RMSE value increases.

Table II: Features Extraction using SMFA Algorithm for a Tata Indica
Car’s Magnetic Signature

Seg. Len αmin αmax

Q for W =
RMSE

1◦ 2.5◦ 5◦

L = 2 −15.71◦ +26.23◦ 26 11 6 2.15
L = 4 −15.49◦ +25.75◦ 20 11 6 4.78
L = 6 −14.76◦ +24.28◦ 17 10 5 7.30
L = 8 −15.03◦ +24.45◦ 13 9 5 9.62

The value of computing α̂ is expensive as it in-
volves computation of arcsin for every time-instant k ∈
{1, . . . , �N/L�}. The larger the value of L, lesser is the
computational cost. The computational complexity of the
least square cost function shown in equation (4) is of the
order O(�N/L�). In order to check the variation of RMSE
as the segment length L increases, we calculate the average
RMSE for all the datasets mentioned in Table I across
different values of M ∈ {1, 2, 3, 4}. Let D be the total
number of datasets available (D = 234) and RMSEi be the
RMSE value for the ith dataset, then the Average RMSE
denoted by RMSE is computed as follows.

RMSE =
1

D

D∑
i=1

RMSEi (5)

Table III shows the order of complexity and average
RMSE denoted by RMSE for L ∈ {2, 4, 6, 8} for all
the datasets available in Table I based on equation (5). As
the value of L increases, the RMSE value increases. But,
this does not help us in choosing a value of L on which
the classification algorithm can be performed. In order to
do that, we run the classifier algorithm and check for its
performance across different segment lengths. The analysis
of the performance measure is done in the next section.

IV. CLASSIFICATION PERFORMANCE

In this section we look at classification of the vehicles
mentioned in Table I based on the features obtained using
MDMS algorithm. A SVM model usually involves separat-
ing data into sets - training and testing. It is built using
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Table III: Computational Complexity and RMSE Across Available
Datasets

Segment Length Order of Complexity RMSE

L = 2 O(�N/2�) 1.967
L = 4 O(�N/4�) 3.381
L = 6 O(�N/6�) 4.689
L = 8 O(�N/8�) 5.905

Algorithm 1 Segmented Magnetic Field Angle Algorithm
(SMFA Algorithm)

Input: Smoothed Vehicle Magnetic Signature - aN×1

1: Subtract every kth, k ∈ {1, . . . , N} sample with the
mean of first N/10 samples of aN×1

2: for j=1 to �N/L� do
3: Estimate α̂(j)

α̂(j) = argmin
α(j)

L∑
i=1

∣∣a(j−1)L+i − g(α(j))
∣∣2

subject to |α̂(j)| ≤ π
4

4: end for
Output: αmin = minimum of α̂, αmax = maximum of α̂,

Q = no. of non-zero bins of α̂ histogram for bin-size
W .

the datasets that are used as training data. We are using
SVM [2] for data classification. Each instance in a training
set contains one label value and several attributes. The goal
of the SVM is to produce a model (based on the training
samples) which predicts the target label of the test sample
given only the test sample attributes. Given a training set of
instance-label pairs (xi, si), i = {1, . . . , F} where xi ∈ R

P ,
s ∈ {1,−1}F and P is the length of the feature vector then,
SVMs require the solution of the following optimization
problem

min
w,γ,ξ

1

2
wTw+ C

F∑
i=1

ξi (6)

subject to si(w
TΦ(xi) + γ) ≥ 1− ξi,

ξi ≥ 0.

The function Φ maps the training vectors into a higher
dimensional space. SVM finds a linear separating decision
hyperplane with the maximal margin in the higher dimen-
sional space. C > 0 is the penalty parameter for the error
term ξ with ith element ξi. Furthermore, K(xi,xj) ≡

Φ(xi)
T
Φ(xj) is called the Kernel function. We used the

MATLAB[10] function svmtrain to train SVM classifier.
To classify new data with the result of the training data,
MATLAB function svmclassify, which is a binary classi-
fier, is used. In order to randomly pick training and testing
data of lengths Ltr and Lts respectively, MATLAB function
crossvalind is used. This function takes in a parameter
q ∈ [0, 1] as input which is used to control the lengths of

training and testing data. In all our simulation results, we
have considered a linear kernel function as it performed
better than other kernel functions like polynomial kernel,
Gaussian radial basis function kernel and hyperbolic tangent
kernel.
If Ωi is the number of vehicles classified correctly among

Lts number of cars in the ith iteration and the total number
of iterations is I , then using the SVM toolbox functions, the
correct rate of classification, CR across two different classes
fixing the training data and testing data lengths is calculated
as follows.

CR =
1

I

I∑
i=1

Ωi

Lts

(7)

We begin our analysis by studying the performance of
SMFA Algorithm. The feature vector includes minimum
value, αmin; maximum value, αmax; and the number of
non-zero bins Q, obtained from α̂. Table IV shows the
CR value for different segment lengths, L ∈ {2, 4, 6, 8},
across different bin-size W for Type 1 (length of the car
lies between 3.0m to 3.5m) vs Type 4 (length of the car
lies between 4.5m to 5.0m). The value of I = 100 is fixed
in all our simulations and based on the CR values obtained,
the SVM performs the best for segment length of L = 6.

Table IV: Percentage of Correct Rate of Classification CR for Type 1
vs Type 4 Cars Based on SMFA Algorithm

Dataset Length Segment Bin Size
(Ltr , Lts) Length 1.0◦ 2.5◦ 5.0◦

(70,44)

L = 2 77.42 76.63 76.63
L = 4 77.92 77.16 77.67
L = 6 78.23 77.23 77.88
L = 8 77.60 77.86 78.37

(80,34)

L = 2 76.55 76.21 77.18
L = 4 76.33 76.39 76.55
L = 6 77.00 77.03 77.76
L = 8 77.21 77.03 77.70

(90,24)

L = 2 79.17 78.91 79.26
L = 4 79.17 78.87 79.09
L = 6 79.65 79.57 80.48
L = 8 79.78 79.78 80.09

Table V gives the CR for different lengths of training
and testing datasets of cars belonging to Type 1 and Type 4
category. The SVM performance of the existing algorithms is
compared with the proposed feature extraction algorithms.
Based on the values of CR obtained in Table V, SMFA
algorithm performs better than other algorithms. The SMFA
algorithm gave 80.48% as the correct rate of classification
for segment length L = 6 and bin-size W = 5◦. Table VI
gives the CR for different lengths of training and testing
datasets of cars belonging to Type 1 and Type 2 grouped
together verses Type 3 and Type 4 grouped together. In this
case also, the SMFA algorithm performs better than existing
algorithms and MDMS algorithm. The SMFA algorithm
gave 68.67% as the correct rate of classification for segment
length L = 6 and bin-size W = 5◦.
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Table V: Percentage of Correct Rate of Classification CR for Type 1 vs Type 4 Car for Average Bar, Hill Transform, MDMS Algorithm and SFMA
Algorithm

Datasets Feature Extraction Algorithms

(Ltr , Lts)
Average Bar Hill Transform MDMS Algorithm[9] SMFA Algorithm

Algorithm[8] Algorithm[8]
3-DM Normalized 3-DM Dipole Segment Length L = 6

Moments m̃ Separation ΔX W = 1◦ W = 2.5◦ W = 5◦

(70,44) 72.70 76.33 73.80 74.14 77.23 77.23 77.88
(75,39) 73.42 75.32 72.70 73.29 77.37 77.37 77.66
(80,34) 73.88 75.39 74.12 74.27 77.00 77.03 77.76
(85,29) 75.36 78.43 76.40 76.61 79.61 80.25 79.89
(90,24) 76.26 77.91 76.67 76.78 79.65 79.57 80.48

Table VI: Percentage of Correct Rate of Classification CR for Type 1 & Type 2 vs Type 3 & Type 4 Car for Average Bar, Hill Transform, MDMS
Algorithm and SFMA Algorithm

Datasets Feature Extraction Algorithms

(Ltr, Lts)
Average Bar Hill Transform MDMS Algorithm [9] SMFA Algorithm

Algorithm [8] Algorithm [8] 3-DM Normalized 3-DM Dipole Segment Length L = 6
Moments m̃ Separation ΔX W = 1◦ W = 2.5◦ W = 5◦

(110,124) 61.74 63.88 63.25 63.55 67.28 67.56 67.47
(120,114) 62.79 64.27 63.97 64.16 67.94 67.89 67.90
(130,104) 63.28 64.73 63.32 63.71 68.04 67.57 68.31
(140,94) 62.80 64.42 63.30 63.61 67.85 67.18 68.04
(150,84) 63.00 64.37 63.95 64.31 68.27 68.23 68.67

V. CONCLUSION

The main contribution of this paper is proposing a sensor
dependent data model called as the Magnetic Field Angle
Model (MFAM). In this model, we modeled the magnetic
signature of a vehicle based on the metallic configuration and
composition of the vehicle. The angle between the internal
magnetization vector and the direction of current for a fixed
segment length is estimated using a least square cost func-
tion. In SMFA algorithm, from the estimated rotation angle
values for different segment lengths, we obtain the maximum
rotation angle, minimum rotation angle and the spread of
the signal from the histogram plot of the estimated rotation
angles. These three values are considered as a feature vector
and a SVM configuration with linear kernel is applied. Based
on the percentage of correct rate of classification obtained
for different lengths of training and testing data, the SMFA
algorithm performs better than all algorithms when there is a
distinct difference between the length of the cars. Also the
computational complexity of SMFA is lower as compared
with the other algorithms.
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APPENDIX A.
DIFFERENTIAL VOLTAGE EQUATION FOR AMR

WHEATSTONE BRIDGE

If an external magnetic field H is applied, parallel to the
plane of the permalloy but perpendicular to the current flow
as shown in Fig. 2, the internal magnetization vector of the

permalloy will rotate around an angle α. As a result, the
resistance of R of the permalloy will change as a function
of the rotation angle α and is as follows.

R = R0 +ΔR0 cos
2 α (8)

where R0 and ΔR0 are material constants. If H is the
applied field and H0 is the earth’s magnetic field, then the
value of α can be obtained using the following equation.

sin2 α =

⎧⎨
⎩

H2

H0
2 for H ≤ H0

1 for H > H0

(9)

The Resistance of an AMR sensors is now given by:

R =

⎧⎨
⎩ R0 +ΔR0

(
1− H2

H0
2

)
for H ≤ H0

R0 for H > H0

(10)

The magnetoresistive effect can be linearized by depositing

Figure 2: AMR Element with Applied Field H parallel to the surface of
the permalloy. The direction of the current is perpendicular to the applied
field. The magnetization vector makes an angle α with the current vector

aluminum stripes (barber poles), on top of the permalloy
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strip at an angle of 45◦ to the strip axis. For sensors using
barber poles arranged at an angle of +45◦ to the strip axis,
the following expression for the sensor characteristic can be
derived:

R = R0 +
ΔR0

2
+ ΔR0

(
H

H0

)√
1−

H2

H0
2 (11)

Likewise, for sensors using barber poles arranged at an angle
of −45◦, the equation derives to:

R = R0 +
ΔR0

2
−ΔR0

(
H

H0

)√
1−

H2

H0
2 (12)

Equation of a balanced Wheatstone bridge is as follows.

R4

R3
=

R2

R1
(13)

If all four resistor values R1, R2, R3 and R4, the supply
voltage Vs are known and the resistance of the galvanometer
is high enough such that Ig is negligible, then the voltage
across the bridge VG can be found by working out the
voltage from each potential divider and subtracting one from
the other as shown in equation (14).

VBD = VG =

(
R4

R3 +R4
−

R2

R2 +R1

)
Vs (14)

The resistances of a Wheatstone bridge are such that, re-
sistances R1 and R4 increase, and resistances R2 and R3

decrease, due to the alignment of barber poles, when an
external magnetic field is applied. The bridge is balanced
by laser trimming. By comparing the mid-point voltages,
absolute resistor tolerances are canceled and an extremely
sensitive field detector can be made. Let α be the angle
between the current flow and the resultant field for all the
four resistances R1, R2, R3 and R4. Then,

R1 = R4 = R0 +
ΔR0

2
+ ΔR0

(
H

H0

)√
1−

H2

H0
2 (15)

R2 = R3 = R0 +
ΔR0

2
−ΔR0

(
H

H0

)√
1−

H2

H0
2 (16)

Substituting R1, R2, R3 and R4 values from equation (15)
and (16), and rearranging the terms we get,

VBD =

(
ΔR0

R0

1 + ΔR0

2R0

)(
H

H0

)(√
1−

H2

H0
2

)
Vs (17)

In equation (17), since R0 andΔR0 are material parameters.
We define K as a material constant and is equal to:

K =
ΔR0

2R0
(18)

Substituting equations (9) and (18) in equation (17) and
multiplying with the Op-Amp gain constant G we get,

VBD = G

(
K

1 +K

)
(sin 2α)Vs (19)
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